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Flux Linkage

• Consider two magnetically coupled circuits
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Flux Linkage (Cont’d)

• The magnetic flux produced I1 linking the surface 
S2 is given by

• If the circuit C2 comprises N2 turns and the circuit 
C1 comprises N1 turns, then the total flux linkage 
is given by
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Mutual Inductance

• The mutual inductance between two circuits is 
the magnetic flux linkage to one circuit per 
unit current in the other circuit: 
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Neumann Formula for Mutual 
Inductance
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Neumann Formula for Mutual 
Inductance (Cont’d)
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Neumann Formula for Mutual 
Inductance (Cont’d)

• The Neumann formula for mutual inductance 
tells us that

– L12 = L21

– the mutual inductance depends only on the 
geometry of the conductors and not on the 
current
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Self Inductance

• Self inductance is a special case of mutual 
inductance.

• The self inductance of a circuit is the ratio of the self 
magnetic flux linkage to the current producing it: 
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Self Inductance (Cont’d)

• For an isolated circuit, we call the self 
inductance, inductance, and evaluate it using
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Self-Inductance

• Formula by Definition

– Applies to linear magnetic materials only

– Units:

flux linkage

current through each turn
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Inductance of Coaxial Cable

• Magnetic Flux

• Inductance

(as commonly used in transmission line theory)
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Inductance of Toroid

• Magnetic Flux 
Density

• Magnetic Flux

• If core small 
vs. toroid
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Inductance of Toroid

• Inductance

– Result assumes that no flux escapes through gaps 
in the windings (actual L may be less)

– In practice, empirical formulas are often used to 
adjust the basic formula for factors such as 
winding (density) and pitch (angle) of the wiring 
around the core
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Alternative Approaches

• Self-inductance in terms of

– Energy

– Vector magnetic potential (A)

– Estimate by Curvilinear Square Field Map method
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Energy Stored in Magnetic Field

• The magnetic energy stored in a region 
permeated by a magnetic field is given by
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Energy Stored in an Inductor

• The magnetic energy stored in an inductor is 
given by
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Inductance of a 
Long Straight Solenoid

• Energy Approach

• Inductance
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Internal Inductance 
of a Long Straight Wire

• Significance: an especially important issue 
for HF circuits since

• Energy approach (for wire of radius a)
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Internal Inductance 
of a Long Straight Wire

• Expressing Inductance in terms of energy

• Note:  this result for a straight piece of wire 
implies an important rule of thumb for HF 
discrete component circuit design: 

“keep all lead lengths as short as possible”
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Example of Calculating 
Self-Inductance

• Exercise 1

Find: the self-inductance of

a)  a 3.5 m length of coax cable with a = 0.8 mm and b = 4 
mm, filled with a material for which

r = 50.
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Example of Calculating 
Self-Inductance

• Exercise 1 (continued)

Find: the self-inductance of

b) a solenoid having a length of 50 cm and 500 turns about a 

cylindrical core of 2.0 cm radius in which r = 50 for 0 <  < 
0.5 cm and r = 1 for 0.5 <  < 2.0 cm
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Inductors in Series and in Parallel

 Inductors, like resistors and capacitors, can be 
placed in series

 Increasing levels of inductance can be obtained by placing 
inductors in series
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Inductors in Series and in Parallel

Inductors, like resistors and capacitors, can be 
placed in parallel.

 Decreasing levels of inductance can be obtained by 
placing inductors in parallel.
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Mutual Inductance

• Significant when current in one conductor 
produces a flux that links through the path of 
a 2nd separate one and vice versa

• Defined in terms of magnetic flux (m)
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Mutual Inductance Between Circular 
Loops

• A circular loop of conducting wire of 
radius a carries current I. Find the 
magnetic field on the axis of the loop a 
distance h from the plane of the loop 
by direct integration of the Biot-Savart 
Law.

• If a small circular circuit of radius   is 
placed at this position (so that the 
magnetic field may be considered 
uniform over the area of the small 
loop) such that the planes of the two 
circuits are parallel, find the mutual 
inductance between them.
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